Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.314
Filtrar
1.
Anim Biotechnol ; 35(1): 2307012, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38305036

RESUMO

This study investigated the association of selected growth hormone receptor (GHR) gene SNPs with selected fertility and milk production-related phenotypes of cross-bred dairy cows (n = 153) reared on three National Livestock Development Board farms in Sri Lanka. Selected cows were genetically screened for SNPs in the exon 08 (n = 153) and 5' upstream (n = 118) regions of the GHR gene using the target sequencing method. The relationships between different genotypes and fertility traits (average calving interval, average number of services per conception, and age at first calving) and milk production-related traits (average total lactation yield, average lactation length, and average milk yield) were analyzed using the General Linear Model in SPSS. Among the identified Four GHR SNPs, rs1099014416 was significantly associated with average calving interval and age at first calving. Cows with GG genotype exhibited younger age at first calving (918.51 ± 113.42 days) and longer calving intervals (543.41 ± 43.29 days) compared to cows with GT (1275.18 ± 38.31, 515.09 ± 24.49 days) and TT (1212.89 ± 88.22, 364.52 ± 54.01 days) genotypes. Other SNPs did not show associations with the studied traits. SNP rs109014416 has the potential to be used as a genetic marker for fertility-related traits in the selection of cross-bred dairy cows in Sri Lanka which should be validated with a larger population.


Assuntos
Leite , Receptores da Somatotropina , Feminino , Bovinos/genética , Animais , Receptores da Somatotropina/genética , Prevalência , Sri Lanka , Fertilidade/genética , Lactação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
2.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241182

RESUMO

Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.


Assuntos
Nanismo , Hormônio do Crescimento , Animais , Feminino , Humanos , Masculino , Camundongos , Nanismo/genética , Estudo de Associação Genômica Ampla , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Knockout , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Proteínas de Membrana/genética
3.
Gen Comp Endocrinol ; 346: 114404, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37940008

RESUMO

Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.


Assuntos
Geômis , Hormônio do Crescimento Humano , Perciformes , Animais , Hormônio do Crescimento/metabolismo , Privação de Alimentos/fisiologia , Fator de Transcrição STAT5/metabolismo , Geômis/genética , Geômis/metabolismo , Fígado/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio do Crescimento Humano/metabolismo , Perciformes/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Peixes/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Músculo Esquelético/metabolismo , RNA Mensageiro/genética
4.
Geroscience ; 46(2): 1543-1560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37653270

RESUMO

Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.


Assuntos
Longevidade , Proteoma , Camundongos , Animais , Longevidade/genética , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/genética , Receptores da Somatotropina
5.
J Mol Endocrinol ; 72(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855323

RESUMO

Excess growth hormone (GH) has been implicated in multiple cancer types and there is increasing interest in the development of therapeutic inhibitors targeting GH-GH receptor (GHR) signalling. Here we describe a panel of anti-GH monoclonal antibodies (mAbs) generated using a hybridoma approach and identify two novel inhibitory mAbs (1-8-2 and 1-46-3) that neutralised GH signalling. mAbs 1-8-2 and 1-46-3 exhibited strong inhibitory activity against GH-dependent cell growth in a Ba/F3-GHR cell viability assay, with EC50 values of 1.00 ± 0.27 and 0.5 ± 0.1 µg/mL, respectively. Cross-reactivity with the human placental hormones, placental lactogen (PL) and placental GH, was observed by ELISA, but neither antibody cross-reacted with mouse GH or human prolactin (PRL). mAb 1-8-2 had a binding affinity for GH of KD 0.62 ± 0.5 nM, while mAb 1-46-3 had a KD of 2.68 ± 0.53 nM, as determined by bio-layer interferometry. mAb 1-46-3 inhibited GH-dependent signal transduction in T-47D and LNCaP cancer cell lines and reduced GH-dependent cell growth and migration in the breast cancer cell line T-47D. mAb 1-46-3 inhibited T-47D cell viability more effectively than the GHR antagonist B2036. In conclusion, we describe two novel inhibitory anti-GH mAbs and provide in vitro evidence supporting development of these entities as anti-cancer therapeutics.


Assuntos
Anticorpos Monoclonais , Hormônio do Crescimento , Animais , Feminino , Humanos , Camundongos , Gravidez , Anticorpos Monoclonais/farmacologia , Linhagem Celular , Hormônio do Crescimento/imunologia , Placenta/metabolismo , Receptores da Somatotropina/metabolismo , Transdução de Sinais
6.
J ASEAN Fed Endocr Soc ; 38(2): 124-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045665

RESUMO

Primary growth hormone (GH) resistance or growth hormone insensitivity syndrome, also called Laron syndrome, is a hereditary disease caused by mutations in the GH receptor or in the post-receptor signaling pathway. This disorder is characterized by postnatal growth failure resembling GH deficiency. Differentiating the two conditions is necessary. We present the cases of two siblings, a 16-year-old female and a 9-year-old male, born from a consanguineous union. Both had normal birth weights with subsequent severe short stature and delayed teeth eruption, with no features suggestive of any systemic illness. Serum insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) were both low. Suspecting GH deficiency, provocative testing with clonidine was done revealing peak growth hormone >40 ng/mL in both patients. In view of low IGF1 and IGFBP3 and high GH on stimulation, IGF1 generation test was done for both siblings, with values supporting the diagnosis of GH insensitivity or Laron syndrome.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Laron , Masculino , Feminino , Humanos , Adolescente , Criança , Síndrome de Laron/diagnóstico , Irmãos , Hormônio do Crescimento/uso terapêutico , Hormônio do Crescimento Humano/uso terapêutico , Receptores da Somatotropina
7.
Genes (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002975

RESUMO

In this study, to explore the effect of growth hormone changes on the related genes and regulatory roles of the turtle, PCR amplification, real-time fluorescence quantitative analysis, and enzyme cutting technology were used to clone and sequence the somatostatin (SS) gene, growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-I) sequence of Chinemys reevesii. The effects of human growth hormone on the mRNA expression of growth-axis-related genes SS, GHR, and IGF-1 in different sexes were observed. The study of the SS gene in turtles using real-time fluorescence quantitative PCR showed that the SS gene was mainly expressed in the nervous system and the digestive system, with the highest expression found in the brain, while the GHR gene and the IGF-I gene were expressed in all tissues of Chinemys reevesii. The SS gene was expressed in the brain, pituitary, liver, stomach, and intestine, with the highest expression in the brain and the lowest expression in the liver. Within 4 weeks of the injection of exogenous growth hormone, the expression level of the SS gene in the brain of both sexes first increased and then decreased, showing a parabolic trend, and the expression level of the experimental group was lower than that of the control group. After the injection of growth hormone (GH), the expression of the GHR gene in the liver of both sexes showed a significant increase in the first week, decreasing to the control group level in the second week, and then gradually increasing. Finally, a significant level of difference in the expression of the GHR gene was reached at 3 and 4 weeks. In terms of the IGF-I gene, the changing trend of the expression level in the liver was the same as that of the GHR gene. After the injection of exogenous growth hormone, although the expression of the SS gene increased the inhibition of the secretion of the GHR gene by the Reeves' turtle, exogenous growth hormone could replace the synthesis of GH and GHR, accelerating the growth of the turtle. The experiments showed that the injection of recombinant human growth hormone affects the expression of SS, GHR, and IGF-1 genes, and promotes the growth of the Reeves' turtle.


Assuntos
Hormônio do Crescimento Humano , Tartarugas , Masculino , Animais , Feminino , Humanos , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Receptores da Somatotropina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/farmacologia , Regulação da Expressão Gênica , Somatostatina/genética , Somatostatina/metabolismo
8.
Yale J Biol Med ; 96(3): 313-325, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37780997

RESUMO

Laron syndrome (LS) is a rare autosomal recessively segregating disorder of severe short stature. The condition is characterized by short limbs, delayed puberty, hypoglycemia in infancy, and obesity. Mutations in growth hormone receptor (GHR) have been implicated in LS; hence, it is also known as growth hormone insensitivity syndrome (MIM-262500). Here we represent a consanguineous Pakistani family in which three siblings were afflicted with LS. Patients had rather similar phenotypic presentations marked with short stature, delayed bone age, limited extension of elbows, truncal obesity, delayed puberty, childish appearance, and frontal bossing. They also had additional features such as hypo-muscularity, early fatigue, large ears, widely-spaced breasts, and attention deficit behavior, which are rarely reported in LS. The unusual combination of the features hindered a straightforward diagnosis and prompted us to first detect the regions of shared homozygosity and subsequently the disease-causing variant by next generation technologies, like SNP genotyping and exome sequencing. A homozygous pathogenic variant c.508G>C (p.(Asp170His)) in GHR was detected. The variant is known to be implicated in LS, supporting the molecular diagnosis of LS. Also, we present detailed clinical, hematological, and hormonal profiling of the siblings.


Assuntos
Síndrome de Laron , Puberdade Tardia , Humanos , Síndrome de Laron/genética , Síndrome de Laron/diagnóstico , Mutação/genética , Obesidade , Paquistão , Receptores da Somatotropina/genética
9.
Am J Physiol Endocrinol Metab ; 325(5): E425-E437, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672248

RESUMO

Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.


Assuntos
Hormônio do Crescimento Humano , Neoplasias , Humanos , Hormônio do Crescimento/metabolismo , Transdução de Sinais/fisiologia , Janus Quinase 2/metabolismo , Hormônio do Crescimento Humano/metabolismo , Receptores da Somatotropina/metabolismo , Fosforilação , Obesidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Arch Med Res ; 54(8): 102884, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659952

RESUMO

Pegvisomant, the first and currently only clinically available growth hormone receptor antagonist, is an effective therapeutic option for the medical treatment of acromegaly, a rare disorder characterized by excessive growth hormone secretion. With now over 20 years of real world experience, its safety and efficacy is well-established. However, several aspects of its clinical use are still controversially discussed. The high cost of pegvisomant has limited its use in several countries, and recent studies have reported a lower efficacy than the initial clinical trials. A reported increase in tumor volume under therapy varies between studies and has been attributed to either actual growth or re-expansion after cessation of somatostatin receptor ligand therapy. Furthermore, different combinations of pegvisomant and other therapeutic agents aiming at reduction of acromegaly disease activity have been proposed to increase or retain effectiveness while lowering side effects and cost. This review aims to assess current clinical data on the safety and efficacy of pegvisomant while also addressing controversies surrounding its use.


Assuntos
Acromegalia , Hormônio do Crescimento Humano , Humanos , Acromegalia/tratamento farmacológico , Acromegalia/induzido quimicamente , Acromegalia/patologia , Receptores da Somatotropina/uso terapêutico , Hormônio do Crescimento Humano/efeitos adversos , Antagonistas de Hormônios/efeitos adversos , Fator de Crescimento Insulin-Like I
11.
Vitam Horm ; 123: 109-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717983

RESUMO

Much of our understanding of growth hormone's (GH)'s numerous activities stems from studies utilizing GH receptor (GHR) knockout mice. More recently, the role of GH action has been examined by creating mice with tissue-specific or temporal GHR disruption. To date, 37 distinct GHR knockout mouse lines have been created. Targeted tissues include fat, liver, muscle, heart, bone, brain, macrophage, intestine, hematopoietic stem cells, pancreatic ß cells, and inducible multi-tissue "global" disruption at various ages. In this chapter, a summary of each mouse line is provided with background information on the generation of the mouse line as well as important physiological outcomes resulting from GHR gene disruption. Collectively, these mouse lines provide unique insights into GH action and have resulted in the development of new hypotheses about the functions ascribed to GH action in particular tissues.


Assuntos
Encéfalo , Receptores da Somatotropina , Animais , Camundongos , Receptores da Somatotropina/genética , Coração
12.
Pituitary ; 26(6): 660-674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747600

RESUMO

PURPOSE: Growth hormone receptor knockout (GHR-KO) pigs have recently been developed, which serve as a large animal model of Laron syndrome (LS). GHR-KO pigs, like individuals with LS, are obese but lack some comorbidities of obesity. The purpose of this study was to examine the histological and transcriptomic phenotype of adipose tissue (AT) in GHR-KO pigs and humans with LS. METHODS: Intraabdominal (IA) and subcutaneous (SubQ) AT was collected from GHR-KO pigs and examined histologically for adipocyte size and collagen content. RNA was isolated and cDNA sequenced, and the results were analyzed to determine differentially expressed genes that were used for enrichment and pathway analysis in pig samples. For comparison, we also performed limited analyses on human AT collected from a single individual with and without LS. RESULTS: GHR-KO pigs have increased adipocyte size, while the LS AT had a trend towards an increase. Transcriptome analysis revealed 55 differentially expressed genes present in both depots of pig GHR-KO AT. Many significant terms in the enrichment analysis of the SubQ depot were associated with metabolism, while in the IA depot, IGF and longevity pathways were negatively enriched. In pathway analysis, multiple expected and novel pathways were significantly affected by genotype, i.e. KO vs. controls. When GH related gene expression was analyzed, SOCS3 and CISH showed species-specific changes. CONCLUSION: AT of GHR-KO pigs has several similarities to that of humans with LS in terms of adipocyte size and gene expression profile that help describe the depot-specific adipose phenotype of both groups.


Assuntos
Obesidade , Receptores da Somatotropina , Humanos , Animais , Suínos , Obesidade/genética , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Tecido Adiposo/metabolismo , Hormônio do Crescimento/metabolismo , Perfilação da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo
13.
J Neurosci ; 43(40): 6816-6829, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37625855

RESUMO

Dysfunctions in growth hormone (GH) secretion increase the prevalence of anxiety and other neuropsychiatric diseases. GH receptor (GHR) signaling in the amygdala has been associated with fear memory, a key feature of posttraumatic stress disorder. However, it is currently unknown which neuronal population is targeted by GH action to influence the development of neuropsychiatric diseases. Here, we showed that approximately 60% of somatostatin (SST)-expressing neurons in the extended amygdala are directly responsive to GH. GHR ablation in SST-expressing cells (SSTΔGHR mice) caused no alterations in energy or glucose metabolism. Notably, SSTΔGHR male mice exhibited increased anxiety-like behavior in the light-dark box and elevated plus maze tests, whereas SSTΔGHR females showed no changes in anxiety. Using auditory Pavlovian fear conditioning, both male and female SSTΔGHR mice exhibited a significant reduction in fear memory. Conversely, GHR ablation in SST neurons did not affect memory in the novel object recognition test. Gene expression was analyzed in a micro punch comprising the central nucleus of the amygdala (CEA) and basolateral (BLA) complex. GHR ablation in SST neurons caused sex-dependent changes in the expression of factors involved in synaptic plasticity and function. In conclusion, GHR expression in SST neurons is necessary to regulate anxiety in males, but not female mice. GHR ablation in SST neurons also decreases fear memory and affects gene expression in the amygdala, although marked sex differences were observed. Our findings identified for the first time a neurochemically-defined neuronal population responsible for mediating the effects of GH on behavioral aspects associated with neuropsychiatric diseases.SIGNIFICANCE STATEMENT Hormone action in the brain regulates different neurological aspects, affecting the predisposition to neuropsychiatric disorders, like depression, anxiety, and posttraumatic stress disorder. Growth hormone (GH) receptor is widely expressed in the brain, but the exact function of neuronal GH action is not fully understood. Here, we showed that mice lacking the GH receptor in a group of neurons that express the neuropeptide somatostatin exhibit increased anxiety. However, this effect is only observed in male mice. In contrast, the absence of the GH receptor in somatostatin-expressing neurons decreases fear memory, a key feature of posttraumatic stress disorder, in males and females. Thus, our study identified a specific group of neurons in which GH acts to affect the predisposition to neuropsychiatric diseases.


Assuntos
Hormônio do Crescimento , Somatostatina , Feminino , Masculino , Camundongos , Animais , Somatostatina/metabolismo , Hormônio do Crescimento/metabolismo , Ansiedade , Medo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Neurônios/metabolismo
14.
J Biol Chem ; 299(8): 105030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442239

RESUMO

Human growth hormone (hGH) is a pituitary-derived endocrine protein that regulates several critical postnatal physiologic processes including growth, organ development, and metabolism. Following adulthood, GH is also a regulator of multiple pathologies like fibrosis, cancer, and diabetes. Therefore, there is a significant pharmaceutical interest in developing antagonists of hGH action. Currently, there is a single FDA-approved antagonist of the hGH receptor (hGHR) prescribed for treating patients with acromegaly and discovered in our laboratory almost 3 decades ago. Here, we present the first data on the structure and function of a new set of protein antagonists with the full range of hGH actions-dual antagonists of hGH binding to the GHR as well as that of hGH binding to the prolactin receptor. We describe the site-specific PEG conjugation, purification, and subsequent characterization using MALDI-TOF, size-exclusion chromatography, thermostability, and biochemical activity in terms of ELISA-based binding affinities with GHR and prolactin receptor. Moreover, these novel hGHR antagonists display distinct antagonism of GH-induced GHR intracellular signaling in vitro and marked reduction in hepatic insulin-like growth factor 1 output in vivo. Lastly, we observed potent anticancer biological efficacies of these novel hGHR antagonists against human cancer cell lines. In conclusion, we propose that these new GHR antagonists have potential for development towards multiple clinical applications related to GH-associated pathologies.


Assuntos
Hormônio do Crescimento Humano , Receptores da Prolactina , Humanos , Proteínas de Transporte/química , Linhagem Celular , Hormônio do Crescimento Humano/antagonistas & inibidores , Hormônio do Crescimento Humano/química , Prolactina/química , Receptores da Prolactina/antagonistas & inibidores , Receptores da Prolactina/química , Receptores da Somatotropina/química , Polietilenoglicóis/química
15.
Protein Sci ; 32(9): e4727, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37428391

RESUMO

Recombinant human growth hormone (rhGH) and GH receptor antagonists (GHAs) are used clinically to treat a range of disorders associated with GH deficiency or hypersecretion, respectively. However, these biotherapeutics can be difficult and expensive to manufacture with multiple challenges from recombinant protein generation through to the development of long-acting formulations required to improve the circulating half-life of the drug. In this review, we summarize methodologies and approaches used for making and purifying recombinant GH and GHA proteins, and strategies to improve pharmacokinetic and pharmacodynamic properties, including PEGylation and fusion proteins. Therapeutics that are in clinical use or are currently under development are also discussed.


Assuntos
Hormônio do Crescimento Humano , Receptores da Somatotropina , Humanos , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Receptores da Somatotropina/agonistas , Receptores da Somatotropina/antagonistas & inibidores
16.
Eur Rev Med Pharmacol Sci ; 27(12): 5530-5541, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37401289

RESUMO

OBJECTIVE: Acromegaly is a fatal and chronic disease that is caused by the abnormal secretion of growth hormone (GH) by the pituitary adenoma or pituitary tumor, resulting in an increased circulated concentration of insulin-like growth factors 1 (IGF-1), where in most of the cases it is secreted by a pituitary tumor. Higher levels of GH cause an increase in IGF-1 in the liver leading to multiple conditions such as cardiovascular diseases, glucose imbalance, cancer, and sleep apnea. Medical treatments such as surgery and radiotherapy can be used as the first choice of patients; however, specified human growth hormone control should be an essential treatment strategy due to an incidence rate of 0.2-1.1 yearly. Therefore, the main focus of this study is to develop a novel drug for treating acromegaly by exploiting medicinal plants that have been screened using phenol as a pharmacophore model to identify target therapeutic medicinal plant phenols. MATERIALS AND METHODS: The screening identified thirty-four pharmacophore matches of medicinal plant phenols. These were selected as suitable ligands and were docked against the growth hormone receptor to calculate their binding affinity. The candidate with the highest screened score was fragment-optimized and subjected to absorption, distribution, metabolism, and excretion (ADME) analysis, in-depth toxicity predictions, interpretation of Lipinski's rule, and molecular dynamic simulations to check the behavior of the growth hormone with the fragment-optimized candidate. RESULTS: The highest docking energy was calculated as -6.5 K/mol for Bauhiniastatin-1. Enhancing the performance of Bauhiniastatin-1 against the growth hormone receptor with fragment optimization portrayed that human growth hormone inhibition can be executed in a more efficient and better way. Fragment-optimized Bauhiniastatin-1 (FOB) was predicted with high gastrointestinal absorption, a water solubility of -2.61 as soluble, and synthetic accessibility of 4.50, achieving Lipinski's rule of 5, with low organ toxicity prediction and interpreting a positive behavior against the targeted protein. The discovery of a de novo drug candidate was confirmed by the docking of fragment-optimized Bauhiniastatin-1 (FOB), which had an energy of -4,070 Kcal/mol. CONCLUSIONS: Although successful and completely harmless, present healthcare treatment does not always eradicate the disease in some individuals. Therefore, novel formulas or combinations of currently marketed medications and emergent phytochemicals will provide new possibilities for these instances.


Assuntos
Acromegalia , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Humanos , Acromegalia/tratamento farmacológico , Acromegalia/etiologia , Acromegalia/cirurgia , Fator de Crescimento Insulin-Like I/metabolismo , Farmacóforo , Fenóis/uso terapêutico , Receptores da Somatotropina/uso terapêutico , Hormônio do Crescimento
17.
BMC Endocr Disord ; 23(1): 155, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474955

RESUMO

BACKGROUND: Human growth hormone (hGH) plays a crucial role in growth by binding to growth hormone receptor (GHR) in target cells. Binding of GH molecules to their cognate receptors triggers downstream signaling pathways leading to the transcription of several genes, including insulin-like growth factor (IGF)-1. Pathogenic variants in the GHR gene can result in structural and functional defects in the GHR protein, leading to Laron Syndrome (LS) with the primary clinical manifestation of short stature. So far, around 100 GHR variants have been reported, mostly biallelic, as causing LS. CASE PRESENTATION: We report on three siblings from an Iranian consanguineous family who presented with dwarfism. Whole-exome sequencing (WES) was performed on the proband, revealing a novel homozygous missense variant in the GHR gene (NM_000163.5; c.610 T > A, p.(Trp204Arg)) classified as a likely pathogenic variant according to the recommendation of the American College of Medical Genetics (ACMG). Co-segregation analysis was investigated using Sanger sequencing. CONCLUSIONS: To date, approximately 400-500 LS cases with GHR biallelic variants, out of them 10 patients originating from Iran, have been described in the literature. Given the high rate of consanguineous marriages in the Iranian population, the frequency of LS is expected to be higher, which might be explained by undiagnosed cases. Early diagnosis of LS is very important, as treatment is available for this condition.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Síndrome de Laron , Humanos , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/tratamento farmacológico , Irã (Geográfico) , Consanguinidade , Linhagem , Nanismo/genética , Fator de Crescimento Insulin-Like I/metabolismo
18.
Animal ; 17(8): 100897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478798

RESUMO

Feeding approaches for ruminants are changing to reduce N excretion as a major source of pollution. Based on the ruminohepatic cycle of N, it was assumed that the metabolism of ruminants could tolerate a reduced-protein diet well. However, metabolic changes such as a reduction in hepatic IGF1 mRNA expression, resulting in lower blood IGF1 levels due to decreased hepatic growth hormone receptor (GHR) expression, were found. Therefore, the aim of the present study was to determine the effect of a low-protein diet on the expression of GHR and subsequent IGF1 signalling in the renal cortex of young male goats to verify whether organ-specific synthesis of IGF1 mRNA expression occurs. Kidney cortex samples were obtained from eight goats fed a control diet (20% CP) and nine animals fed a reduced-protein diet (9% CP). The expression of GHR in the kidneys was reduced, whereas the expression of Janus kinase 2 (JAK2), suppressor of cytokine signalling 3 and signal transducers and activators of transcription 3 (STAT3) increased significantly. The stimulated JAK2 expression could modulate the expression of STAT3, which led to increased renal IGF1 mRNA expression. These results suggest that this increase in IGF1 mRNA expression in the kidneys is tissue-specific. This could be due to the autocrine/paracrine IGF1 effect on renal cell metabolism during a protein-reduced diet. These signalling pathways need further investigation to understand how and why low levels of protein stimulate IGF1 synthesis differently in the kidney than in the liver.


Assuntos
Cabras , Rim , Masculino , Animais , Cabras/metabolismo , Rim/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Dieta/veterinária , RNA Mensageiro/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio do Crescimento/metabolismo
19.
Geroscience ; 45(5): 2967-2981, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37273159

RESUMO

Caloric restriction (CR), which extends lifespan in rodents, leads to increased hepatic fatty acid ß-oxidation and oxidative phosphorylation (OXPHOS), with parallel changes in proteins and their mRNAs. Genetic mutants that extend lifespan, including growth hormone receptor knockout (GHRKO) and Snell dwarf (SD) mice, have lower respiratory quotient, suggesting increased reliance on fatty acid oxidation, but the molecular mechanism(s) of this metabolic shift have not yet been worked out. Here we show that both GHRKO and SD mice have significantly higher mRNA and protein levels of enzymes involved in mitochondrial and peroxisomal fatty acid ß-oxidation. In addition, multiple subunits of OXPHOS complexes I-IV are upregulated in GHRKO and SD livers, and Complex V subunit ATP5a is upregulated in liver of GHRKO mice. Expression of these genes is regulated by a group of nuclear receptors and transcription factors including peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptors (ERRs). We found that levels of these nuclear receptors and their co-activator PGC-1α were unchanged or downregulated in liver of GHRKO and SD mice. In contrast, NCOR1, a co-repressor for the same receptors, was significantly downregulated in the two long-lived mouse models, suggesting a plausible mechanism for the changes in FAO and OXPHOS proteins. Hepatic levels of HDAC3, a co-factor for NCOR1 transcriptional repression, were also downregulated. The role of NCOR1 is well established in the contexts of cancer and metabolic disease, but may provide new mechanistic insights into metabolic control in long-lived mouse models.


Assuntos
Receptores Citoplasmáticos e Nucleares , Receptores da Somatotropina , Camundongos , Animais , Regulação para Cima , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fosforilação Oxidativa , Ácidos Graxos , Estresse Oxidativo
20.
Gut Microbes ; 15(1): 2221098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37306416

RESUMO

Both growth hormone (GH) and gut microbiota play significant roles in diverse physiological processes, but the crosstalk between them is poorly understood. Despite the regulation of GH by gut microbiota, study on GH's influence on gut microbiota is limited, especially on the impacts of tissue specific GH signaling and their feedback effects on the host. In this study, we profiled gut microbiota and metabolome in tissue-specific GHR knockout mice in the liver (LKO) and adipose tissue (AKO). We found that GHR disruption in the liver rather than adipose tissue affected gut microbiota. It changed the abundance of Bacteroidota and Firmicutes at phylum level as well as abundance of several genera, such as Lactobacillus, Muribaculaceae, and Parasutterella, without affecting α-diversity. Moreover, the impaired liver bile acid (BA) profile in LKO mice was strongly associated with the change of gut microbiota. The BA pools and 12-OH BAs/non-12-OH BAs ratio were increased in the LKO mice, which was due to the induction of CYP8B1 by hepatic Ghr knockout. Consequently, the impaired BA pool in cecal content interacted with gut bacteria, which in turn increased the production of bacteria derived acetic acid, propionic acid, and phenylacetic acid that were possible to participate in the impaired metabolic phenotype of the LKO mice. Collectively, our findings suggested that the liver GH signaling regulates BA metabolism by its direct regulation on CYP8B1, which is an important factor influencing gut microbiota. Our study is significant in exploring gut microbiota modification effects of tissue-specific GH signaling as well as its involvement in gut microbiota-host interaction.


Assuntos
Microbioma Gastrointestinal , Receptores da Somatotropina , Animais , Camundongos , Esteroide 12-alfa-Hidroxilase , Fígado , Bacteroidetes , Ácidos e Sais Biliares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...